HIP::Keck

From Earlham Cluster Department

(Difference between revisions)
Jump to: navigation, search
(Calibration Notes)
(Calibration Notes)
Line 50: Line 50:
|3-(*)Conductivity
|3-(*)Conductivity
|6-(*)ISE2 Orp
|6-(*)ISE2 Orp
-
|}    
+
|}
-
 
+
-
 
+
-
 
+
Next, head into the report menu (6). Make sure that the temp, cond (mS/cm),  
Next, head into the report menu (6). Make sure that the temp, cond (mS/cm),  
Line 59: Line 56:
look like this:
look like this:
-
'''Report setup'''
+
{| class="wikitable" border="1"
-
 
+
|+ Report Setup
-
1-( )Date           8-( )Sal ppt      
+
|-
-
 
+
|1-( )Date
-
2-( )Time hh:mm:ss 9-(*)DOsat %      
+
|8-( )Sal ppt
-
 
+
|-
-
3-(*)Temp C         A-(*)DO mg/L      
+
|2-( )Time hh:mm:ss
-
 
+
|9-(*)DOsat %
-
4-( )SpCond         B-( )DOchrg      
+
|-
-
 
+
|3-(*)Temp C
-
5-(*)Cond mS/cm     C-(*)pH          
+
|A-(*)DO mg/L
-
 
+
|-
-
6-( )Resist         D-( )pH mV        
+
|4-( )SpCond
-
 
+
|B-( )DOchrg
-
7-( )TDS           E-(*)Orp mV  
+
|-
 +
|5-(*)Cond mS/cm
 +
|C-(*)pH
 +
|-
 +
|6-( )Resist
 +
|D-( )pH mV
 +
|-
 +
|7-( )TDS
 +
|E-(*)Orp mV
 +
|}         
After you're done with that, type 2 to get to the calibration menu. Type the  
After you're done with that, type 2 to get to the calibration menu. Type the  

Revision as of 15:40, 14 May 2008

Contents

Calibration Notes

Sensors in the 600R

Parameters available in the 600R

Simple instructions and pictures documenting the process:

~~Starting

Before doing anything, you'll have to SSH into pmp3. Make sure to SSH into pmp3 as root.

Next, you want to go to the cron directory and comment out the first line of crontab using vi. This will prevent any scripts from running while you're trying to calibrate the sensor.

Start up minicom, this will get you directly into the sonde unit.

Type "menu" and it will give you a list of options.

Press 7 to get into the sensor menu. Make sure all of them are enabled. You can enable them simply by typing the corresponding number of the sensor you wish to enable. The table should look something like this after your'e done:

Sensors Enabled
1-(*)Time 4-(*)Dissolved Oxy
2-(*)Temperature 5-(*)ISE1 pH
3-(*)Conductivity 6-(*)ISE2 Orp

Next, head into the report menu (6). Make sure that the temp, cond (mS/cm), DOsat %, DO mg/L, pH and Orp mV options are filled in. Once again, it should look like this:

Report Setup
1-( )Date 8-( )Sal ppt
2-( )Time hh:mm:ss 9-(*)DOsat %
3-(*)Temp C A-(*)DO mg/L
4-( )SpCond B-( )DOchrg
5-(*)Cond mS/cm C-(*)pH
6-( )Resist D-( )pH mV
7-( )TDS E-(*)Orp mV

After you're done with that, type 2 to get to the calibration menu. Type the corresponding number of what you want to calibrate.

Note that the sonde will go into a sleep mode after short period of time. You may need to type the number twice. Additionally, make sure to rinse the sonde with distilled water and wipe it down each time before you submerge it in a new solution in order to avoid contamination.


~~Conductivity

Option 1 is conductivity. This will bring up a menu asking you if you want to calibrate for a specific conductivity, conductivity or salinity. It is reccommended that you calibrate for specific conductivity. This will automatically calibrate the other two options.

Note the unit measurements of your solution, the sonde measures in millisiemens/centimeter, so unit conversion may be required.

After choosing specific conductivity, you will be asked to input the conductivity of your solution. Make sure that the probe is submerged in the solution, then input the correct conductivity and press enter.

Wait for the readings to stabilize, then press enter twice.


~~Dissolved Oxygen

Option 2 is Dissolved Oxygen. This will present you with two options. Either Dissolved Oxygen Saturation Percentage, or Dissolved Oxygen in milligrams per liter.

There are two options for calibrating via percentage. Either find a solution completley saturated with oxygen, or to incompletley submerge the probe and allow the environment to become saturated with water. Either way, this should give you a oxygen saturation of 100%

Choosing saturation % will require you to enter the atmospheric pressure in mmHg (Millimeters of Mercury) you can get inHg (Inches) from our local weather station at www.cs.earlham.edu

Apply the following formula: inHg x 25.4 = mmHg

If you get it from a nonlocal weather station, you'll need to correct it. The formula is as follows: True BP = [Corrected BP] - (2.5*[Local Altitude above sea level]/100)

BP MUST be measured in mmHg for the above formula to work correctly.

Alternately, choosing mg/L will ask you what the current mg/L concentration is in the solution. This will vary depending on temperature and atmospheric pressure. You can find a table of the appropriate values at:

[Link]

When polling for the dissolved oxygen data, the ./man_poll script will currentlygive an incorrect reading, as it takes several pollings of the sensor to start giving correct readings. Simply minicom into the probe and type menu 1 1 1, this will start running a discreet sampling. After about 4 or 5 readings, the probe will start giving you the correct values.


~~pH

Option 3 is pH, This will bring you to a menu prompting for 1-point, 2-point or 3-point calibration. You will need a number of solutions corresponding to the number of points you wish to calibrate for.

Choose the point option that you wish to calibrate. Submerge the sonde in a solution, then input the pH of the solution, wait for the readings to stabilize and press enter twice, repeat as required.

I found that calibrating for pH 7 -> 10 -> 4 will yield acceptable results.


~~Orp

Option 4 is Orp, or Oxygen Reduction Potential.

Surprisingly simple. Simply input the expected ORP when asked, make sure that the probe is submerged in the solution, and wait for it to give you your results.

Wait for the results to stabilize and then press enter twice.

Yes, it's really that simple.

Note that you may not quite get the results that you were expecting. This is because of a high potential for corruption of ORP readings. Your sensor may be dirty, the temperature may be off, or there may be other problems. Refer to:

Note that you may not quite get the results that you were expecting. This is because of a high potential for corruption of ORP readings. Your sensor may be dirty, the temperature may be off, or there may be other problems. Refer to:

http://www.eutechinst.com/techtips/tech-tips18.htm

http://www.ysilifesciences.com/extranet/EPGKL.nsf/5992085488f9da9d85256a550047c2a2/5937664c59855b65852569e7005bfad8!OpenDocument

For some useful notes about ORP / ORP Calibration.


~~Testing Calibration And Finishing Up

After you finish calibration, exit the sonde unit. Failure to do so will result in a need to reboot the board before performing any more calibrations.

Simply press 0 until it prompts you to exit. After you exit the menu, exit minicom. Change directories to the script folder, then run the script man_poll [OPTION].

Don't forget to go back and uncomment the crontab when you're done.

~~

Solutions, Mike has ordered enough of each of the ones we need. Enumerate them here.

Questions for Mike

To connect to Sonde directly:

infobomb

Infobomb.jpg

Possible Commercial Product

http://store.pasco.com/pascostore/showdetl.cfm?DID=9&Detail=1&Product_ID=54417

Well Types

Stilling Well

http://nd.water.usgs.gov/gage/images/shedweb.jpg

Sensors

All-in-one Units, "Sondes"

Sonde Matrix
Make Model Temp pH Redox (ORP) Cond Nitrate DO Sulfide Turbidity Specs Data Storage Power Interface Price
Individual Sensors y y y n y y n n USB $1265.00
Loose Sensors y y y y y y n y
YSI Hydrodata 600 R y y y y n y n n no spec sheet
YSI Hydrodata 600 XL y y y y n y n n pdf  ?? External 12VDC RS232, SDI-12
YSI Hydrodata 600 XLM y y y y n y n n pdf 384K 4 AA batteries, external 12VDC RS232, SDI-12 $4460.25
YSI Hydrodata 6920 y y y y y y n y pdf 384K flash ROM Batteries, external 12VDC RS232, SDI-12 $6327.00
YSI Hydrodata 6820 y y y y y y n y pdf  ?? Batteries, external 12VDC RS232, SDI-12
YSI Hydrodata 6600 y y y y y y y y pdf 384K 8 C batteries, external 12VDC RS232, SDI-12
Rickly Hydrological Company Datasonde 4A y y add-in y add-in y add-in add-in no spec sheet  ?? Batteries RS232, SDI-12
Sutron 5600-0703 y y y y y y n y pdf  ?? 4 or 8 AA batteries, 12VDC RS232, RS485, RS422, SDI-12
Campbell Scientific / Hach Environmental / Hydrolab DS5  ? y y y y y n y pdf 512 KB memory 8 C batteries RS 232, RS 485, SDI-12
Campbell Scientific / Hach Environmental / Hydrolab DS5X  ? y y y y y n y pdf 512 KB memory 8 C batteries RS 232, RS 485, SDI-12
Campbell Scientific / Hach Environmental / Hydrolab MS5  ? y y y y y n y pdf 512 KB memory 8 AA batteries RS 232, RS 485, SDI-12

Water Temperature

RTP - Ruggedized Wide Range Temperature Probe

The RTP temperature probe is designed for wide temperature range applications requiring excellent chemical resistant properties and sensor submersion.

pH

Redox Potential

Conductivity

Nitrate Levels (NO3?)

Dissolved Oxygen

Sulfide Concentrations

Turbidity

Jeff: Mike Deibel says that we could build a turbidity sensor using LEDs and fiber-optic cables without too much difficulty. He is willing to help with construction if necessary. However, we both agreed that finding an assembly that meets our need would probably be the first course of action.

Maduna: I did some research on how to design a turbidimeter and found the following:

Here is a summary of the possible equipment and designs we could use:

Batteries

Here are some different battery sizes that we may want to use:

Note: The battery lifetimes are calculated based on the assumption we will be sending data every hour.

Some Available Battery Sizes
Make Model Capacity (Ah) Voltage (V) Temp Range (F) Lifetime (days) Weight (lb) Dimensions Price ($)
MK ES12-12 12 12 5 to 104 1.96 9.39 -- --
Odyssey PC680 16 12 -40 to 144 2.61 -- -- --
Tempest TR24-12B 24 12 5 to 104 3.92 -- -- --
CSB GP12400 40 12 5 to 104 6.54 -- -- --

Enclosures

Charge Controllers

Charge Controller Matrix
Make Model Specs Manual Voltage AMP PWM LVD Temp comp Charge display Price
Morningstar SunGuard pdf pdf 12 4.5 Y N integrated none --
Morningstar SunKeeper-6 pdf pdf 12 6 Y N integrated, opt. remote One LED $63.00 (Solar Panel Store)
Sundaya Apple 5 none none  ?? 5  ? Y  ? Many LEDs $22.65 (Sundaya)
Phocos CML05-2 none none 12/24 5 Y Y integrated Some LEDs $25.00 (Real Goods)
Steca PR 505 pdf pdf 12 5 Y Y integrated? Three LEDs --

Solar Panels

Single Board Computers

Gumstix

Technologic Systems

Embedded Arm Product Matrix
SBC Type DIO lines A/D Converter Price
TS-7200 ARM 20 8 ch. 12-bit (opt) $149.00
TS-7250 ARM 20 5 ch. 12-bit $149.00
TS-7260 ARM 30 & XDIO* 2 ch. 12-bit $179.00
TS-7300 ARM 55 (35 XDIO) n/a $219.00
TS-7400 ARM 20 4 ch. 8 bit $129.00
TS-5500 x86 38 (IRQ) 8 ch. 8 bit $319.00

TS-DIO64 Digital I/O Board

TS-DIO64 Digital I/O Board, which is a 8-bit PC/104 (standard format) peripheral board that provides 64 digital I/O points (32 inputs plus 32 outputs). Up to 4 TS-DIO64 boards may be installed into a single system, enabling up to 256 DIO points (128 inputs plus 128 outputs). The TS-DIO64 DIO functions are compatible with any PC/104 SBC including all the Technologic Systems ARM and X86 products. Consists of the following parts:

Total cost for all parts: $176

PC/104 GSM Cellular Modem Peripheral Board

PC/104 GSM Cellular Modem Peripheral Board, provides internet access through the GSM cellphone network. Standard baud rates up to 115.2 Kbaud. 230 Kbaud supported in x2 mode. Works with all TS boards. Takes standard SIM card with accompanying cellphone service costs. Optional capacitor for backup of modem memory on reset and startup. Consists of the following parts:

Total cost for all parts: $186

Reference Material

KECK

TIES

Personal tools
Namespaces
Variants
Actions
websites
wiki
this semester
Toolbox